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Towards Safe Cities: A Mobile and Social

Networking Approach
Jaime Ballesteros, Bogdan Carbunar, Mahmudur Rahman, Naphtali Rishe, S.S. Iyengar

Abstract—Population density, natural and man-made disasters
make public safety a problem of growing importance. In this
paper we aim to enable the vision of smart and safe cities, by
exploiting mobile and social networking technologies to securely
and privately extract, model and embed real-time public safety
information into quotidian user experiences. We first propose
novel approaches to defining location and user based safety
metrics. We evaluate the ability of existing forecasting techniques
to predict future safety values. We devise iSafe, a privacy
preserving algorithm for computing safety snapshots of co-located
mobile devices as well as geosocial network users. We implement
iSafe as both an Android application and a browser plugin for
visualizing safety levels of visited locations and browsed geosocial
venues. We evaluate iSafe using crime and census data from the
Miami-Dade (FL) county as well as data we collected from Yelp,
a popular geosocial network.

I. INTRODUCTION

Recent technological advances, in particular mobile devices

and online social networks, have paved the way toward a

smarter management of resources in today’s cities. As pop-

ulation density grows and natural disasters and man-made

incidents (e.g., hurricanes, earthquakes, riots [1], [2], [3])

impact increasing number of people, maintaining the safety

of citizens, an essential smart city component, becomes a

problem of paramount significance and difficulty.

We envision a system where users are seamlessly made

aware of their safety in a personalized manner, through quo-

tidian experiences such as navigation, mobile authentication,

choosing a restaurant or finding a place to live. We propose to

achieve this vision by introducing a framework for defining

public safety. Intuitively, public safety aims to answer the

question “Will location L present any danger for user A when

she visits L at a future time T ”?
An important challenge to achieving this vision is the need

to properly understand and define safety. While safety is

naturally location dependent, it is also inherently volatile.

It not only exhibits temporal patterns (e.g., function of the

season, day of week or time of day) but also depends on

the current context (e.g., people present, their profile and

behavior). Furthermore, as suggested by the above question,

public safety has a personal dimension: users of different

backgrounds are likely to be impacted differently by the same

location/time context.

Previous attempts of making people safety-aware include

the use of social media as a means to distribute information
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about unreported crimes [4], or web based applications for

visualizing unsafe areas [5], [6]. The main drawbacks of these

solutions stem from the difficulty of modeling safety and of

integrating its use in the everyday life of people. Instead, in

this paper we investigate the combination of space and time

indexed crime datasets, with mobile technologies and online

social networks to provide personalized and context aware

safety recommendations for mobile and social network users.

Specifically, we first define location centric, static crime

and safety labels, based on recorded crime events. We take

advantage of observed crime behavior periodicities, to conjec-

ture that location safety values are predictable. To verify this

hypothesis, we investigate the ability of timeseries forecasting

tools to predict future location crime and safety index values

based on recorded crime events.

Moreover, we use mobile device and geosocial network

technologies to record the trajectory trace of a user: the set

of (location, time) pairs where the user has been present.

When sufficient crime information exists to enable an accurate

prediction of location based crime levels, we introduce the

concept of personalized safety recommendations: A user U
is safe at a location L, if the average crime index of the

locations in U ’s trajectory trace equals or exceeds the crime

index predicted for the near future at L.
When insufficient crime information exists at a given loca-

tion, we propose to augment the “context” of the location with

data collected from co-located mobile devices and geosocial

networks. We define the vicinity crime probability metric, to

be the chance of crime events being reported around a user

or a group of users, based on their past location trajecto-

ries. We introduce then the concept of context aware safety

recommendations: a user U is safe around users U1, .., Uk if

U ’s vicinity crime probability equals or exceeds the aggregate

vicinity crime probability of users U1, .., Uk.

Furthermore, through the statistical χ2 test we show that

dependencies exist between the quantity and quality of reviews

venues receive in Yelp (a popular geosocial network) and the

crime indexes of the venues’s locations. We then propose to

similarly augment spatiotemporal context with trajectory traces

collected from geosocial network users.

The approach outlined above relies on the ability to aggre-

gate user location trajectories. Access to the trajectory traces

of users, along with associated crime and safety index values,

either by other users or a centralized service provider, raises

significant privacy concerns: even social network providers

have been shown to leak [7] and sell [8] user data to third

parties.

To address this issue, we devise iSafe, a distributed al-
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gorithm that takes advantage of the wireless capabilities of

mobile devices to compute real-time snapshots of the safety

profiles of close-by users in a privacy preserving manner.

iSafe uses secret splitting and secure multi-party computation

mechanisms to aggregate the trajectories of co-located users

without learning the private information of participants.

We have implemented iSafe as a browser plugin component

and an Android application. We provide extensive evaluations

of our contributions using crime and census data from the

Miami-Dade county (FL) as well as data we have collected

from the accounts of users and businesses in Yelp [9], a

popular geosocial network centered on user feedback. Our

experiments performed on a testbed consisting of several

smartphones show that the Android iSafe app is efficient:

the computation overhead is a few milliseconds while the

communication overhead is a few hundred milliseconds. The

iSafe project can be found online [10], providing download-

able Chrome plugin and Android app executables.

The paper is organized as follows. Section II presents the

model considered as well as the datasets and tools used in

this work. Section III proposes a static, location centric safety

labeling technique and Section IV compares the ability of

existing forecasting tools to predict future crime and safety

values. Section V introduces the concepts of personalized and

context aware safety as well as the iSafe solution. Section VI

investigates relationships between social networks and crime

levels. Section VII describes the iSafe implementation and

Section VIII presents evaluation results. Section IX discusses

related work and Section X presents our conclusions.

II. MODEL AND BACKGROUND

The framework consists of three participants, (i) a service

provider, (ii) mobile device users and (iii) geosocial networks.

The service provider, denoted by S in the following, central-

izes crime and census information and provides it upon request

to clients.

We assume the mobile devices are equipped with wireless

interfaces, enabling the formation of transient, ad hoc con-

nections with neighboring devices. Devices are also equipped

with GPS interfaces, allowing them to retrieve their geographic

location. Devices have Internet connectivity, which, for the

purpose of this work may be intermittent. Users take advan-

tage of Internet connectivity not only to report to geosocial

networks but also to retrieve crime information (both described

in the following). Each user needs to install an application on

her mobile device, which we henceforth denote as the client.

In the remainder of this section, we describe the geosocial

network concept, the crime and census datasets that we use in

our work, detail several forecasting tools we use and describe

the attacker model we consider in this work.

A. Geosocial Networks

Geosocial networks (GSNs) such as Yelp and Foursquare

extend classic social networks with the notions of (i) venues,

or businesses and (ii) check-ins. Besides user accounts, GSNs

provide accounts also for businesses (e.g., restaurants, yoga

classes, towing companies, etc). Users “check-in” to report
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Fig. 1. Miami venue stats: Distribution of number of reviews per venue.

their location, in terms of their presence at one of the venues

supported by the GSN. Users can share check-in information

with friends and also use it to achieve special status (badges,

mayorships) and receive frequent customer discounts from par-

ticipating venues. In addition, geosocial networks encourage

and reward user feedback, in the form of ratings and reviews,

left for visited venues. Users rating range from 1 to 5 stars

and are aggregated to produce an overall venue rating.

Yelp Data.: We have collected Yelp information from all

the venues in the Miami-Dade county, Florida, for a total of

7699 venues. For each venue, we have collected the name, type

and address, along with the list of reviews received. For each

review, we collected the home city and state of the reviewer.
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Fig. 2. Miami venue stats: Distribution of venue ratings.

Figure 1 shows the distribution of the per-venue number of

reviews of Miami-Dade venues, with a logarithmic y scale.

It shows a long tail distribution, with around 2000 venues

having 1 review but only 1000 venues having 2 reviews. We

emphasize the low number of venues without reviews - only

177. Figure 2 shows the distribution of the number of venues

with an aggregated rating ranging between 1 and 5: Yelp

reviews are mostly positive as most aggregate ratings are at

or above 4 stars.

B. Crime Data

We use a historical database of more than 2.3 million crime

incidents reported in the Miami Dade county area since 2007

[11]. Each record is labeled with a crime type (e.g., homicide,

larceny, robbery, etc), the time and the geographic location
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Fig. 3. Outcome of DT classifier – statistics of crime in Miami-Dade county.
Distribution of number of crime events per type of crime.

where it has occurred. We briefly document two problems

we encountered when pre-processing this data. First, since

records come from different Police departments, the crime

type labels are non-uniform, (e.g., murder in Miami Beach

vs. homicide in North Miami). Second, crime reports include

many minor incidents (e.g., fire alarms issues), resulting in

over 140 different crime types.

In order to standardize and eliminate ambiguities, we

mapped crimes into 7 categories: Murder, Forcible Rape,

Aggravated Assault, Robbery, Larceny/Theft, Burglary/Arson,

Motor Vehicle Theft. We removed minor crime reports that

did not fall into these categories. Due to the large number

of records in the database, manual mapping was infeasible.

Instead, we have experimented with two machine learning

techniques for classifying each record: the Naive-Bayes (NB)

classifier and the Decision Trees (DT) classifier [12]. In order

to build our training and test sets, we manually annotated

a random sample of 2000 records from different police de-

partments. Then, we split this subset of records into training

and test datasets, each containing 1000 records. We built our

classifiers using the NLTK library [13]. The accuracy was

measured using a simple metric that measures the percentage

of inputs in the test set that the classifier correctly labeled. For

instance, a crime type classifier that predicts the correct crime

type 60 times in a test dataset containing 100 crime types,

would have an accuracy of 60%. On our crime dataset, the NB

classifier achieved an accuracy of 91% and the DT classifier

an accuracy of 98%. Thus, we have used the outcome of the

DT classifier. Figure 3 shows the crime set’s distribution of

the crime categories following the DT classification.

Let c denotes the number of crime types. In our case, c =

7. Let CT = {CT1, .., CTc} denote the set of crime types.

We use Census data sets [14], reporting population counts

and demographic information. The data is divided into geo-

graphical extents e.g. polygons, called census block groups.

Each block contains information about the population within

(e.g., population count, various statistics). According to the

data, Miami Dade county has a population of 2, 496, 435.
Figure 4 shows the geographical distribution of the population

in the Miami Dade county.

Fig. 4. Miami-Dade county: geographical distribution of population. Poly-
gons represent Census Block Groups.

C. Forecasting Tools

We describe here several time series forecasting tools that

we use in our work.

ARIMA Model. ARIMA models incorporate autoregressive

(p),integration(d) and moving average terms(q) to provide

higher fitting and forecasting accuracy. ARIMA uses the

input data to determine the appropriate model form. The

ARIMA forecasting procedure consists of four steps [15], (1)

identifying the ARIMA(p, d, q) structure, (2) estimating the

unknown parameters, (3) fitting tests on the estimated residuals

and (4) forecasting future outcomes based on historical data.

Linear (Double) Exponential Smoothing (LES) Model.

Brown’s linear (double) exponential smoothing [16] includes

trend variations of the time series without a significant sea-

sonal component. The process is controlled by a smoothing

parameter α whose value ranges between 0 and 1. α decides

the weight placed on the most recent observations during the

forecast process. We determine the value of α by minimizing

the root mean squared error (RMSE) [17] from one step-ahead

forecasts and repeating the process for all forecast values.

Artificial Neural Network (ANN). ANNs are data-driven

self-adaptive methods that learn and generalize from expe-

rience and capture subtle functional relationships among the

empirical data even if the inherent relationships are unknown

or difficult to describe. In this paper we focus on the multi-

layer perceptrons (MLP) ANN model, which is particularly

suitable for forecasting, due to its ability for input-output

mapping. The ANN we consider consists of an input layer

(of the same size as the input vector), two layers of hidden

nodes and an output layer providing the forecast value. Before

the training phase, we normalize the input data to a (−1, 1)
range; following the prediction step we map the output back

to the initial range. For the training phase we use a multilayer

feedforward network trained using back propagation and the

Levenberg-Marquardt algorithm to perform function fitting

(nonlinear regression).

Error Measurement. We use the root mean squared error
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Fig. 5. Three day (July 15-17, 2011) evolution of the number of crimes
reported within one Miami-Dade block.

(RMSE) and mean absolute percent error (MAPE) [17] as

error measurements to evaluate the accuracy of different

models. MAPE can be easily affected by the magnitude of

the series but it does provide information about the relative

magnitude of the forecast error. On the other hand, RMSE is

a more objective measure in absolute magnitude. Thus, in our

evaluation, the RMSE is used as the primary and MAPE as

the secondary accuracy measure.

D. Attacker Model

We assume a semi-honest, or honest-but-curious service

provider. That is, the service provider is assumed to follow

the protocol correctly, but attempts to learn as much user

information as possible. We assume users can be malicious.

However, each participating user needs to install a provider-

signed client application.

III. LOCATION BASED SAFETY

We exploit the crime dataset to define an initial, location-

centric safety metric. We divide space into census blocks. We

divide time into fixed-length epochs, e.g., 1 hour long, 24

epochs per day. To understand the need for a time dependent

safety metric, we have studied the evolution in time of crimes

reported within blocks of the Miami-Dade county. Figure 5

shows the evolution over three consecutive days (Friday-

Sunday, July 15-17, 2011) of the number of crimes reported

within one such block, with a 3 hour time granularity. Most of

the events are larcenies. The plot shows a significant variance

in the number of crimes reported throughout a day, with a

spike between noon and 6pm. Thus, a fixed aggregate of past

crime events is unlikely to accurately define the present.

Block crime and safety indexes. For a census block B and

an epoch e denoted by the time interval ∆T , let C(B,∆T )
represent a c-dimensional vector, where the i-th entry denotes

the number of crimes of type CT [i] recorded in blockB during

interval ∆T . Let W denote a c-dimensional vector of weights;

each crime type of CT (defined in Section II-B) has a weight

proportional to its seriousness (defined shortly). Let BC(∆T )
denote the population count recorded for block B. We then

define the crime index of block B during interval ∆T as

Crime Type Weight

Assault 0.176

Robbery 0.180

Rape 0.307

Homicide 0.336

TABLE I
CRIME WEIGHT ASSIGNMENT USING THE FCPC.

CI(B,∆T ) = min{
C(B,∆T )W

BC(∆T )
, 1} (1)

where C(B,∆T )W denotes the vectorial product between

the number of crimes per type and the weights of the crime

types. That is, B’s crime index is the per-capita weighted

average of crimes recorded during interval ∆T . The safety

index SI of block B during interval ∆T is then defined as

SI(B,∆T ) = 1− CI(B,∆T ) (2)

Both the CI and SI metrics take values in the [0, 1] interval.

Higher SI(B,∆T ) values denote safer blocks.

Crime weight assignment. We need to assign meaningful

weights to the crime types CT . An inappropriate assignment

may make a large number of “lighter” offenses overshadow

more serious but less frequent crime events, (e.g., consider

larcenies vs. homicides). Assigning weights to crime types

is also a subjective matter: certain people are more likely to

be vulnerable to certain crime categories. In the following,

we restrict our definition of safety to crimes against persons

e.g., assault, robbery, homicide and rape and ignore crimes

against property. Although our model can be applied to both

categories, the focus of this work is on physical safety.

We propose to assign each crime type a weight propor-

tional to its seriousness, defined according to the criminal

punishment code, i.e., the Florida Criminal Punishment Code

(FCPC) [18]. The FCPC is divided into levels ranging 1-10,

and each level Lk contains different types of felonies. The

higher the level, the more serious is the felony. Each felony

has a degree, (i.e., capital, life, first, second and third degree,

sorted in decreasing order of seriousness), with an associated

punishment (years of imprisonment) [19].

Let Lk denote the set of felonies within level k and let Pk

denote the set of corresponding punishments. Let lk = |Lk|
denote the number of felonies within level k. Then, we define
the weight of crime type CT [i], wi, as

wi =

10∑

k=1

ρk
Pk[i]∑lk
j=1

Pk[j]
,

where ρk = k/
∑10

k=1
k is the weight assigned to level k

(normalized to the sum of the number of levels). The weight

of crime type CT [i] is the weighted sum of the per-level

punishment value (Pk[i]) associated with the occurrence of

CT [i] within the felonies of level k, normalized to the total

punishment of level k. Table I shows the resulting weights.

Example. We exemplify the impact of level L8 on the weight

of the “Robbery” crime. Out of the felonies represented

on level 8, two are related to “Robbery”: “Robbery with a

weapon” and “Home-invasion robbery”. Both are first degree
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felonies, therefore punishable with up to 30 years of im-

prisonment. The other represented felonies are “Homicide”,

with 6 different counts, for a total of 135 years penalty

and “Rape”, with 1 count of up to 15 years penalty. Thus,

the contribution of level 8 to the weight of “Robbery” is
8

55
× 60

60+135+15
= 0.0415.

Illustration. We use the Miami-Dade crime set to illustrate

the geographic distribution of block-level safety index infor-

mation, where the epoch, denoted by the interval ∆T , is the

year 2010. We use the census dataset to extract the population

count BC(∆T ). Figure 6 shows the color-coded safety index

for each block group in the Miami-Dade county (FL) where

crimes have been reported during 2010. The safety index

considers only crimes against persons. Blocks without color

have a very low reported crime level. Green blocks denote

safer locations while darker yellow and red blocks denote areas

with more reported crimes.

Fig. 6. Safety index illustration for the Miami-Dade county: SI(B,∆T )
values are mapped into color-coded “safety levels”: the higher the level, the
safer the block.

IV. PREDICTING SAFETY

The crime index computation of Equation 1 can only be

performed for past epochs, when all crime events have been

reported. Safety information however is most useful when

provided for the present or near future. One way to compute

the predicted crime index of a block B for the next epoch

denoted by the interval ∆T , PCI(B,∆T ), is the average

crime index of the block during the same epoch in the day

for the past d days, where d is a system parameter (e.g.,

d=7 for 1 week of recorded per-block history). This solution

however is unable to detect and factor in all crime periodicities,

including seasonal, weekly and daily fluctuations. As such,

it may include unnecessary errors – e.g., higher number of

crimes in a past August may introduce inaccuracies in the

crime index considered in the current month of April.

We propose to address this issue through the use of the

time series forecasting techniques discussed in Section II-C.

Specifically, we use time series forecasting tools to compute

long and short term predictions of the number of crimes to be

committed within an area (e.g., census block, zipcode, city,

etc), based on the area’s recorded history.

Predicting crime and safety indexes. At the beginning of

each epoch (denoted by the time interval ∆T ), we compute

predictions for the number of crimes of each crime type

to be committed at each census block B during the epoch.

Let PC(B,∆T )[i] denote the predicted number of crimes

of type CT [i]. Using a formula similar to Equation 1 we

compute the predicted crime index for B during interval

∆T as PCI(B,∆T ) = min{PC(B,∆T )W/BC(∆T ), 1}.
The predicted safety index is then PSI(B,∆T ) = 1 −
PCI(B,∆T ).

V. PERSONALIZED, CONTEXT-AWARE SAFETY

The ultimate goal of defining crime and safety indexes is

to provide users with safety advisory information. People are

however not equally exposed and vulnerable to all crime types.

Age, gender and an array of personal features, preferences and

choices play a central role in the perception of an individual’s

safety. Since such information may not be readily accessible,

we use instead the localization capabilities of a user’s mobile

device to periodically record and locally store her trajectory

trace. This enables us to define the crime index level with

which a user is comfortable: the average crime index of the

locations in her trajectory. When enough crime information

exists to enable the prediction of the near-future crime index

of a location, we introduce the concept of personalized safety:

the user is safe if her comfortable crime index level equals or

exceeds the predicted crime index of her current location.

However, crime information is not always available or

detailed enough to allow a confident prediction of location

crime index values. For instance, as shown in Figure 5, the

number of recorded events can quickly switch between 0 and

1 in successive intervals. Accurately predicting event counts

within a short time interval is difficult, as the difference

between 0 and 1 crimes is significant.

We propose to address this issue, by exploiting the intuition

that the safety of a place depends not only on its history but

also on its current context. One way to define the context of

a place at a given time is through the people located there

at that time (in Section VI we show how geosocial network

data can be used to construct context). We use the trajectory

trace of the user to define the probability of a crime to occur

around the user and generalize this approach to compute the

probability of a crime to occur around groups of users. We

then introduce the concept of context aware safety: a user is

safe if the probability of a crime to occur around her equals or

exceeds the probability of a crime to occur around the other

users currently co-located with her.

We take advantage of the wireless communication capa-

bilities of user mobile devices to form short lived, ad hoc

communities with co-located devices and use them to ag-

gregate the trajectory information of their users. Since user

trajectories are sensitive information, we introduce iSafe, a

distributed algorithm that allows the aggregation of trajectory

traces of co-located users while preserving the privacy of

involved participants.
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A. Personalized User Safety

We extend the crime and safety index definitions from

locations to users. We assume the user’s device can capture

the user’s location, e.g., using GPS or a combination of

celltower and Wi-Fi access point localization techniques. We

assume a block level localization precision. Let TJU =
{[Bi, Ti, CI(Bi,∆Ti)]|i = 1..h} denote the trajectory trace

of user U , consisting of recorded [block, epoch, crime index]

tuples. ∆Ti denotes the epoch encompassing time Ti when U
was present at block Bi, Ti ∈ ∆Ti. For privacy reasons, we

require each user to store her trajectory trace on her device.

We define the vicinity crime probability value of a user U ,

VU to be the percentage of the user’s trajectory places where

crimes have been reported around the time of her visit:

VU =

∑h

i=1
sgn(CI(Bi,∆Ti))

h
(3)

sgn(x) denotes the sign function, that is 0 when x is 0 , and

1 when x is larger than 0. For instance, if a user has 100

locations in her trajectory and crimes have been reported at

60 of those locations during the epoch of the user’s presence,

the user’s vicinity crime probability is 60%. We then define

the crime index of a user U to be the average crime index of

locations in her trajectory:

CIU =

∑h

i=1
CI(Bi,∆Ti)

h
(4)

1) Safety Decision With Accurate Crime Data: When user

U is located at time Tc in a block B, where accurate past

crime data exists, allowing the proper prediction of the crime

index, we compute the predicted crime index PCI(B,∆T ), as
specified in Section IV, where ∆T denotes the current epoch,

Tc ∈ ∆T . We then introduce the notion of personalized safety

recommendation:

Definition 1: (Personalized safety). A user U is safe at a

block B within time interval ∆T , if CIU ≥ PCI(B,∆T ).

Intuition. A user is safe if the user’s crime index equals or

exceeds the block’s crime index predicted for the duration of

the user’s presence. If the crime index of the user’s current

block, predicted for the epoch of the user’s presence, does

not exceed the user’s level of comfort, it means the user

has spent at least half of her time in locations with more

crime than the current location. Thus, the user is likely to be

comfortable with the crime level of her current location.

2) Safety Decision Without Accurate Crime Data: Certain

locations may have insufficient crime data to ensure an ac-

curate prediction of the location’s crime index. This is the

case also during unexpected events (natural and man made

disasters) when the future does not reflect the past. To address

this issue, we propose to use existing context information,

collected from co-located users. To achieve this, we exploit

ad hoc networks established by devices of co-located users.

Our approach is the following. We define the safety index of

a user U to be the probability of no event being reported in her

vicinity: SIU = 1−VU . Let U1, .., Uk be the users co-located

with user U . We define a super user SUP1..k, as a fictitious

user whose trajectory trace encompasses the trajectories of

users U1, .., Uk. That is, TJU1..k
= TJU1

∪ ..∪TJUk
. We note

that both users and super users can be located in multiple

blocks during the same epoch. We then use Equation 3 to

compute the vicinity crime probability of SUP1..k, VSUP1..k
.

We define the safety index, SISUP1..k
= 1− VSUP1..k

. These

definitions enable us to introduce the notion of personalized

safety recommendation:

Definition 2: (Context-aware safety). A user U is safe

in a context consisting of neighboring users U1, .., Uk, if

SIU ≤ SISUP1..k
, i.e., VU ≥ VSUP1..k

.

That is, the user is safe if it is surrounded by users whose

aggregated safety index is higher or equal to the user’s safety

index.

Intuition. The safety index of a user encodes the probability

of no event occurring around the user. The safety index of a

group of users (e.g., SUP1..k) is defined as the probability of

no event occurring around the group. Definition 2 states that

a user is safe if it is surrounded by a group of users whose

aggregated probability of no event occurring is higher or equal

to the user’s probability of no event occurring. A low safety

index value does not imply the user is unsafe, but merely

the fact that the user spends time in places where events do

occur. If the location sampling process is done periodically, the

formula naturally ensures that blocks where the user spends

more time have more impact on the user’s safety index. Being

around a group of users whose aggregated safety index is low

suggests that the place is likely to have a low safety level.

B. iSafe

One question that remains to be answered is how can

the above decisions be made without requiring participating

users to provide sensitive location traces and safety index

values. To answer this question, we introduce iSafe, a

protocol that implements the above solution, in a privacy

preserving aware fashion. iSafe consists of a main procedure,

C.safetyDecision(B,∆T ), executed periodically by C, at

the C’s user current block B.

Definition 3: (Location Privacy)
Let an adversary A control the service provider S and
any number of clients, such that the number of clients
controlled by A at any location is at most NThr − c,
where NThr and c > 1 are integers. The challenger
C controls a client C. A contacts C at any time T . C
invokes C.safetyDecision(B,∆T ), where B denotes
C’s current block and T ∈ ∆T . A outputs B′, its guess
of the block B where C is located. We say a solution
provides location privacy if the advantage of A in this game,
AdvA = |Pr[B′ = B]− 1/n| is negligible.

Algorithm 1 shows the pseudocode of iSafe. In a first step,

the client C installed on the wireless-enabled mobile device

of a user contacts the service provider S, storing the crime

and Census datasets. C retrieves the predicted crime index of

the block B where the user is located (line 12). This operation

is performed privately, without the client leaking its location

trace, by using a private information retrieval technique [20].
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Algorithm 1: iSafe pseudocode.

1.Object implementation iSafe;
2. neighbor[] N; #set of neighbors
3. double CI, SI; #crime, safety indexes
4. double V; #vicinity crime prob
5. BigInteger R; #random value
6. BigInteger[] shares; #set of shares
7. BigInteger[] NShares; #shares of neighbors

8. int BWC; #blocks with crime
9. int TBlk; #total blocks visited

10.Operation int safetyDecision(Epoch ∆T)
11. B := getCurrentBlock();
12 PCIB := S.getPCI(B, ∆T);
13. if (PCIB! = −1) then return (CI ≥ PCIB);
14. else return cas(); fi
15. end

16.Operation int cas()
17. N := discoverNeighbors();
18. if (N.size < NThr) then return− 1;
19. BWCSUP := multiPartySum(0)− BWC;
20. TBlkSUP := multiPartySum(1)− TBlk;
21. return(V ≥ BWCSUP/TBlkSUP);
22. end

23.Operation BigInteger multiPartySum(int type)
24. R := getRandom();
25. shares := split(R, N.size);
26. for i := 1 to N.size do
27. send(N[i], shares[i]);
28. NShares[i] := recv(N[i]); od
29. int order := electLeaderOrder();
30. BigDecimal S := 0; int count := 0;
31. while (count < N.size) do
32. count := count+ 1;
33. if (count = order) then
34. if (type = 0) then S := S+ BWC+ R;
35. else S := S+ TBlk+ R; fi
36. for i := 1 to |N| do S := S− NShares[i]; od
37. mcast(S);
38. else S := recv(); fi
39. od
40 return S;
41. end

If the crime index of the block can be accurately predicted

(line 13), the operation returns the decision of Definition 1.

Otherwise, it invokes the cas operation (line 14). cas first

discovers all the ad hoc neighbors of the user (line 17). If

the number of neighbors is below a system-wide threshold

value, NThr, it returns -1: not enough information ex-

ists to perform an accurate decision. Otherwise, it invokes

the multiPartySum operation twice, with different input

arguments (lines 19-20). When invoked with argument 0,

multiPartySum calculates BWCSUP , the sum of the blocks

with crimes visited by all the user’s neighbors. When invoked

with argument 1, multiPartySum calculates TBlkSUP , the

sum of the total blocks visited by all the user’s neighbors.

Thus, the ratio of BWCSUP and TBlkSUP generates the

vicinity crime probability of the super user representing the

user’s neighbors. In line 21, cas returns the safety decision of

Definition 2.

ThemultiPartySum operation is a secure multi-party sum

evaluation. It achieves privacy through the use of (i) frequently

changing, random MAC addresses for user devices and (ii)

secret splitting. Each client generates a random value (line

24) and splits it into shares – one for each neighbor. That is,

if the random value is R, the shares sh1, .., shk are generated

randomly such that
∑k

i=1
shi = R. The client sends each

share to one neighbor (lines 26-27) and receives a share from

each neighbor (line 28). The clients engage in a leader election

and order selection distributed algorithm (line 29), where each

client is assigned a unique identifier, between 1 and k.
When a client’s turn comes, according to the order estab-

lished, it adds either the user’s BWC value (number of census

blocks with events visited by the user) or the user’s TBlk value

(total number of blocks visited), according to the input variable

type, and adds its random value R to the overall sum (S),

(lines 34-35). It then subtracts all the shares of secrets of its

neighbors (line 36) and sends a multicast of the result (line 37),

reaching all its neighbors. If it’s not the user’s transmission

turn, the client blocks to receive the multicast values of its

neighbors (line 38).

C. Analysis

We now prove the following results.

Theorem 1: An adversary A controlling k − c out of k
participants in the iSafe algorithm, can only find the sum of
the input values (BWC or Tblk) of the remaining c honest
participants.

Proof: Secret splitting is information theoretical secure:

Without knowing all the shares of a secret, no information

can be inferred about the secret. The adversary A has access

to all intermediate values multicast in Algorithm 1, as well

as k − c shares of the secret of each of the remaining c
honest participants. Let Ri denotes the random value of the

i-th (honest) participant and let s1i, s2i, .., ski be the shares

received by that participant from all the other participants.

Then, the sum Ri + s1i + s2i + ..+ ski is random and cannot

be predicted by A: A only controls k− c shares of Ri (out of

k − 1 shares), but not Ri, thus the other c values in the sum

are random and not under the control of A. Thus, A cannot

infer the value (BWC or TBlk) of user i by comparing the

value of S before and after user i’s multicast.

Theorem 2: iSafe provides location privacy.

Proof: (Summary) The adversary A can only access

user location information from (i) user trajectory traces, (ii)

queries made by iSafe (Algorithm 1 line 12) and (iii) during

computations of the aggregate super user crime and safety

indexes (the multiPartySum operation).

For the first point, we observe that user trajectories are

only stored on the the user’s mobile devices and are never

shared with other participants. For the second point, the

queries made by users in iSafe to A are private, e.g., use

PIR (see Section V-B). Thus, A cannot learn the location of

the user with a probability non-negligible higher than 1/n,
where n is the number of census blocks, without breaking

the security of the PIR solution employed. The third point’s

implicit requirement is that the provider colludes with users

in order to learn information about their neighbors. The use

of random, frequently changing MAC (or physical device)

addresses by participating devices prevents however even such
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a powerful adversary from linking a device identifier to a user,

thus linking a user to a location. Moreover, Theorem 1 shows

that if A controls at most NThr − c clients at any location

where at least NThr+1 clients are located, A can only learn

the sum of the secret values of the remaining (at least c+1,
c > 1) honest clients.

D. Attacks and Defenses

Safety profiles of co-located users are aggregated to obtain

a safety image of locations. Since that image impacts user

decisions, it can become the target of malicious attacks.

For instance, malicious users may attempt to incorrectly (i)

improve the safety of desired locations, for instance to attract

unsuspecting users to unsafe locations or to (ii) decrease the

safety image of target locations. We now describe several

mechanisms that could be exploited to perform these attacks,

and suggest defenses.

Reporting incorrect locations. Malicious users may report

incorrect locations, corresponding to safe areas. Even with

GPS verification mechanisms in place, committing location

fraud has been largely simplified by the recent emergence

of specialized applications for the most popular mobile eco-

systems (LocationSpoofer [21] for iPhone and GPSCheat [22]

for Android). To prevent this attack, location verification

mechanisms can be used [23], [24], [25]. For instance, in

previous work [23], one of the authors has developed venue-

centric location verification techniques, that rely on devices

installed by venue owners within their venues. In the scenario

considered in this paper, the owners’ incentive for participation

is to prevent the tampering of the safety image of their

neighborhood.

Turning off devices in unsafe areas.Users could turn off their

iSafe application when entering bad areas. While we cannot

prevent this behavior, we propose to use rewards and game

mechanics to encourage people to report their location. For

instance, users gain points for each reported location, perhaps

more for the occasional unsafe location. Points are used to

acquire badges, similar in principle to those used by geosocial

networks like Foursquare [26] or Yelp [9].

VI. GEOSOCIAL NETWORK EXTENSIONS

Geosocial networks, with their emphasis on the location of

both users and venues, seem ideal candidates for augmenting

spatiotemporal context. We first investigate relations between

crimes and geosocial networking activities. We then propose

to use geosocial network user location trajectories to improve

the accuracy of iSafe.

A. Crime vs. Geosocial Activity Dependencies

We conjecture that the crime activity recorded at a location

has a bearing on the quality and quantity of reviews recorded

at nearby venues. We investigate this hypothesis through the

combination of review data we collected from Yelp and the

Miami-Dade crime dataset.

One question we need to answer is whether there exists a

relation between the rating of a venue and the safety of its

location. For this, we first mapped each venue in the Miami-

Dade county to its corresponding census block, then computed
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Crime Index (CI) values for each block using the crime

events of 2011. We need to test for dependencies between

two different mixed variables, (i) categorical user ratings and

(ii) continuous CI values. Since, linear regression or any other

method for continuous variables are not ideal, we discretized

the CI variable into 5 levels, using 1-dimensional k-means

(k set to 5), that guarantees optimal partitioning for one-

dimensional data.

We have then built a contingency matrix, by grouping the

venues according to their ratings and assigning them to their

corresponding CI level: each cell in the contingency matrix

contains the number of venues that have the corresponding

user rating and belong to a block having the corresponding

CI level. We have used the χ2 test to test the dependency

between the two categorical variables [27]. We used the R [28]
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package to compute the χ2 test and we obtained the p-
value, or the observed level of significance, and corresponding

standard residuals. In short, the standard residuals indicate

the importance of the cell to the ultimate χ2 value; by

comparing standard residuals, one can easily identify the cells

that contribute the most to the χ2 test. Since the observed level

of significance is extremely low (very close to zero) we reject

the null hypothesis and therefore we conclude that there exists

a dependence between CI values and user ratings.

Figure 7 shows the corresponding mosaic plot, displaying

the relationship between ratings and CI values: the areas of

the rectangles are proportional to the probabilities of the user

ratings and to the conditional probabilities of the CI levels. It

shows that the bulk of the Yelp venues (even low rated ones)

are in places where crime levels are low. This can be due to

the fact that the distribution of the venues per CI values is long

tail, which may be further explained by the fact that (i) in the

Miami-Dade county there are few areas with high crime levels

and (ii) Yelp is not popular in those areas - people may not

even report venues located there in Yelp. Moreover, as shown

in Figure 2, Yelp ratings are biased toward higher values.

A second question is whether there exists a relation between

the number of reviews a venue receives and the safety of

the venue’s location. Once again, even though the number of

reviews is not a categorical variable, it is discrete. Therefore,

we tested their association with CI values using the χ2 test.

We created review count interval buckets and we assigned each

venue to one bucket according to its number of reviews. We

computed the range of the intervals using the 1-dimensional

k-means algorithm with k set to 10. The χ2 test produced a

corresponding p-value very close to zero, thus answering our

question in the affirmative. Figure 8 shows the corresponding

mosaic plot of this experiment. It confirms that most Yelp

venues are located in safe areas as well as the long tail

distribution of the number of reviews per venue in Yelp, shown

in Figure 1.

In order to identify the sources of the dependencies, we

studied a specialized view of this data - the relationship

between review counts and crime types (see Section II-B).

One finding is depicted in Figure 9, showing the relationship

between reported rapes and review counts: rapes occur more

frequently in places with low number of reviews. Furthermore,

we study the relation between crime types and the number

of reviews received from visitors vs. locals. This information
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Fig. 10. Number of larcenies/thefts per number of venue’s reviews.

is publicly available, as Yelp users need to specify a home

city/state. Figure 10 shows that the number of larcenies is high

around venues with many local reviews. A potential explana-

tion is that local yelpers (Yelp users) are more likely to choose

venues in good neighborhoods, and good neighborhoods are

more likely to attract thieves.

B. Geosocial iSafe

We propose to extend iSafe with geosocial network infor-

mation. For each geosocial network user U , we define the

trajectory trace TJU = {[Bi,∆T,CI(Bi,∆Ti)]|i = 1..h}.
Each TJU record consists of (i) the block containing a venue

where U has written a review, (ii) the time epoch∆T when the

user wrote the review and (iii) the crime index of the block

during that epoch. In Yelp, the timestamps associated with

reviews have a 1-day granularity, thus, ∆T is 1-day long.

While geosocial network user trajectories are likely to be

more sparse than those collected from mobile devices, their

similar definition enables us to use Equations 3 and 4 to

compute the user’s vicinity crime probability and crime index

values. Furthermore, we use the vicinity crime probability and

crime index values of users who wrote reviews for a Yelp

venue to compute aggregate venue crime index and vicinity

crime probability values, using the mobile version of iSafe

(see Algorithm 1). These definitions allow us to extend the

personalized context aware safety decisions of Section V-A.

VII. ISAFE IMPLEMENTATION

We implemented iSafe as a (i) web server, (ii) a browser

plugin running in the user’s browser and (iii) a mobile ap-

plication. We use Apache Tomcat 6.0.35 to route requests

(exposed to the client through a REST API interface) to our

server-side component. The server-side component relies on

the latest servlet v3.0 which offers additional features includ-

ing asynchronous support, making the server-side processing

much more efficient.

A. Browser Plugin

We implemented the browser plugin for the Chrome browser

using HTML, CSS and Javascript. The plugin interacts with

Yelp pages and the web server, using content scripts (Chrome
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Fig. 11. Snapshot of iSafe’s plugin functionality for a Yelp venue. The
orange circle indicates the venue’s safety level.

specific components that let us access the browser’s native

API) and cross-origin XMLHttpRequests. If our content script

receives content from another web site, it inspects it for cross-

site scripting attacks before injecting the content into the

current page (e.g., to protect the user from a hijack attack).

To store and process review and user data for each venue, we

use the SQLite 3.7.12.1 as the DB server.

The idea behind the browser plugin is to extend the

experience of geosocial networks like Yelp [9] with safety

information. Specifically, the browser plugin becomes active

when the user navigates to a Yelp page. For user and venue

pages, the plugin parses their HTML file and retrieves their

reviews. We employ a stateful approach, where the server’s

DB stores all reviews of pages previously accessed by users.

This enables significant time savings, as the plugin needs to

send to the web server only reviews written after the date of

the last user’s access to the page. The initial access is likely

to be slower, requiring the plugin to access multiple pages of

reviews.

Given the venue’s set of reviews, the server determines the

corresponding reviewers. Since we do not have access to the

location trajectories of users, to compute a user’s security label

we rely on the venues reviewed by the user: The user safety

is computed as an average over the safety labels of the blocks

containing the venues reviewed by the user. Given the safety

labels of reviewers, we determine the safety level of the venue.

The server sends back the safety level of the venue, which

the plugin displays in the browser. Figure 11 shows iSafe’s

extension to the Yelp page of the venue “Top Value Trading

Inc.” in Hialeah, FL (central left yellow rectangle containing

iSafe’s safety recommendations).

B. Mobile iSafe.

We have implemented the location centric static safety

labeling component of iSafe for a mobile application using

Android. We used the Android Maps API to facilitate the lo-

cation based service employed by our approach. We represent

safety using five color labels ranging from green (safe) to red

(unsafe).

We used the SQLite version 3.4.0 database to store the

trajectory trace of the user, along with timestamps, on her

smartphone. The database also caches the Census block struc-

ture and associated safety indexes for the city where the user

(a) (b)

Fig. 12. Snapshots of iSafe on Android.

is located. This ensures both (i) privacy – the user trajectory

and her requests for block safety indexes never leave her phone

and (ii) performance – frequent block safety index requests are

performed locally, while infrequent census block safety index

updates are performed periodically to ensure an accurate copy

of the device’s cache.

Whenever a user starts the iSafe app, iSafe retrieves the

user’s current geolocation, derives the current census block

and also the corresponding crime index. iSafe stores the user’s

trajectory as one record [block, time, crime index] in the

SQLite database. The initial threshold values for creating a

new record are 60 seconds. iSafe uses an exponential backoff

algorithm [29] coupled with accelerometer data to ensure that a

static device does not consume battery power on GPS queries.

iSafe updates then the user’s current crime index and vicinity

crime probability values.

iSafe uses Bluetooth [30] to compute the vicinity crime

probabilities for the user’s neighbors. We implemented a

client-server Bluetooth communication protocol where each

device acts as a server and other connected devices act as

clients per P2P communication. Bluetooth is a packet-based

protocol with a master-slave structure in which one master

may communicate with up to 7 slaves in a piconet [30].

iSafe has a separate background service that displays the

status bar of the Android device, the safety color label of the

user’s current location. Figures 12(a) and 12(b) show snapshots

of iSafe’s functionality.

VIII. EVALUATION RESULTS

A. Browser Plugin Performance

Figure 13 shows the overhead of the iSafe plugin when

collecting the reviews of a venue browsed by the user, as a

function of the number of reviews the venue has. It includes

the cost to request each review page, parse and process the

data for transfer. The experiments were performed on the Dell

laptop. It exhibits a sub-linear dependence on the number of

reviews of the venue (under 1s for 10 reviews but under 30s

for 4000 reviews), showing that Yelp’s delay for successive
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Fig. 13. iSafe browser plugin overhead: Collecting reviews from venues, as
a function of the number of reviews.

requests decreases. While even for 500 reviews the overhead

is less than 5s, we note that this cost is incurred only once per

venue. Subsequent accesses to the same venue, by any other

user will no longer incur this overhead.

B. Forecasting Accuracy

We explore here the performance of the time series fore-

casting techniques discussed in Section II-C in predicting the

number of crimes to occur at a location during the near future,

based on the recorded history.

We used the R statistical software package [28] to generate

the ARIMA model and MATLAB toolboxes [31] for LES and

ANN models. In the following, we analyze separately three

crime types, aggravated assault, robbery and larceny/theft that

make up for more than 75% of the total amount of crimes.

As we show later in this section, predicting categorized event

counts enables the prediction of future safety values.

In the first experiment we used crime data recorded between

2007 and 2010 to predict per-month categorized event counts

for the year 2011, for the entire Miami-Dade county.

Figure 14(a) compares the predictions for the number of

assaults made by ARIMA, LES and ANN against the recorded

values. Table II shows the RMSE and MAPE values for the

three methods. All three models correctly predict the down-

ward trend from May until December, with ANN achieving a

slightly better accuracy than LES and ANN.

Figure 14(b) compares the predictions for the number

of robberies made by ARIMA, LES and ANN against the

recorded values. All models accurately predict the initial

increase followed by a slight decrease in the number of

robberies. ARIMA and ANN outperform the LES model, as

confirmed by the RSME and MAPE values (see Table II).

ARIMA slightly outperforms ANN.

We further focus on finer grained spatial and temporal

predictions: per-block, weekly events. For ANN, we partition

the input data into 95 training vectors and 10 test vectors.

Figure 15(a) compares the recorded data against the ARIMA,

LES and ANN predictions of assault events in the last ten

weeks of 2011, for one block in the Miami-Dade county. We

emphasize the accuracy of the prediction (see Table II), which

is similar for ANN and ARIMA. Finally, we focus on daily

crime predictions. For the same block used in the previous

experiment, using a time window of events recorded between

Jan 1, 2010 and Nov 30, 2011, we predict the 31 days of

December 2011. Fig 15(b) shows the comparison between the

recorded data and the ARIMA, LES and ANN forecast, for

the daily number of larceny/theft events.

Experiment conclusions. ANN slightly outperforms ARIMA

and LES, but all models exhibit good accuracy - except for the

unexpected zero crime incidents observed during a couple of

days. Intuitively, using predicted, future values for the number

of crimes to define the safety of a block leads to more accurate

values than using a static approach.

C. Yelp Safety Profiles

CI value
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Fig. 16. Distribution of block crime index values in the Miami-Dade county.

We have collected public information from the accounts of

2025 Yelp users, all residents of the Miami-Dade county. The

information collected for each user includes the number of

reviews, the venues reviewed, existing check-ins at any venues,

and the date when each review and check-in was recorded.

We build the crime index, CI , value for each Census block

from the Miami-Dade county in 2010. Figure 16 shows the

cumulative distribution function of the CI values (Figure 6

shows their spatial distribution). It shows that for the Miami-

Dade county, most blocks experience relatively low levels of

crime per-capita: 50% of blocks have a CI value smaller than

0.0015 and only 5% of blocks have CI values exceeding 0.01.

0−0.97 0.97−0.98 0.98−0.99 0.99−1.0

SP Value

N
u
m
b
e
r
 
o
f
 
Y
e
l
p
 
u
s
e
r
s

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

3 10

96

1068

Fig. 17. Distribution of safety index values of Yelp users.

Given the CI values of the blocks containing the venues

visited (reviewed or subject of a check-in) by a yelper (Yelp
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Fig. 14. Crime Forecasting Experiments in Miami-Dade: (a) Prediction of assaults, 2011 monthly basis. (b) Prediction of robberies, 2011 monthly basis.
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Fig. 15. Crime Forecasting Experiments in Miami-Dade: (a) Prediction of assaults in a given block for the last 10 weeks of 2011. (b) Prediction of larcenies
in a given block for the last 31 days of 2011.

Fig. 14(a) Fig. 14(b) Fig. 15(a) Fig. 15(b)
Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
ARIMA 158.80 6.42 38.77 7.08 1.27 43 1.57 34.52
LES 151.03 6.79 53.57 11.89 1.41 42.08 1.61 30.07
ANN 116.48 5.32 40.44 8.23 1.3 35.72 1.49 27.02

TABLE II
ERROR MEASUREMENT DATA FOR ARIMA, LES AND ANN.

user), we compute the user’s crime index value, as defined

by Equation 4, then the user’s safety index: SIU = 1 −
CIU . Out of the 2025 collected yelpers, 1194 had written

reviews in 2010. Figure 17 shows the distribution of the safety

index values of these 1194 yelpers. It shows that most Miami-

Dade county yelpers are safe: all have a safety index value

larger than 0.96 (1 is the maximum value), with 90% of them

exceeding 0.99.

We further compare the evolution in time of the safety index

SIB of a block B with the average safety index values over

the Yelp users that visited B (and left feedback). To this end,

based on the crime database, for each month we calculate the

SI value of each block in the Miami-Dade county. We then

compute the monthly average of safety index values of yelpers
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Fig. 18. SI value of a Miami-Dade block and the average of SP values of
Yelp users that visited the block w.r.t time.
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that reviewed venues within B (during the month). Figure 18

shows the monthly evolution of the SIB value of a Miami-

Dade block and the average safety index value of the Yelp

users that visited the block during 2010. For this block, the

two metrics have similar values. This shows that an average

of the safety indexes of the block’s visitors can be used to

replace a crime-based safety index for the block.

D. Android iSafe Evaluation

We have created a testbed consisting of 4 Android smart-

phones: Samsung Admire (OS: Gingerbread 2.3.4), HTC Aria

(OS: Eclair 2.1), Sony E10i (OS: Eclair 2.1) and Samsung

GALAXY S II (OS: Gingerbread 2.3.4). We used Shamir’s

secret sharing solution. For single device testing, we used the

Samsung Admire smartphone with a 800MHz CPU. In the

following, all reported values are averages taken over at least

10 independent protocol runs.

We have first measured the overhead of the secret share

generation and reconstruction operation. Figure 19(a) shows

the overhead on the smartphone, when the modulus size ranges

from 64 to 1024 bits. Note that even a resource constrained

smartphone takes only 4.5 ms and 16 ms for secret splitting

and reconstruction even for 1024 bit long moduli.

Furthermore, we focus on the time and space communi-

cation overhead for a single device as well as for the 4

connected devices in our testbed. Figure 19(b) shows the

dependence of the communication time on the modulus bit

size. Even for modulus size of 1024 bits, the average end-to-

end communication overhead of a single device is 342ms and

1.3s of our whole system. Figure 19(c) shows the dependency

of the communication overhead (in KB) on the modulus size

ranging from 64 to 1024 bits, for a single device and for

the whole system of 4 connected devices. Even for 1024 bit

moduli, the total communication overhead is around 3KB.

IX. RELATED WORK

This work extends our initial efforts [32] with (i) additional

approach details and evaluations, (ii) a list of attacks against

our solutions and defenses provided and (iii) extensive imple-

mentations and evaluations of iSafe including a browser plugin

and an Android application.

Smart cities have been the focus of recent efforts at

IBM [33] and several academic research groups at MIT [34]

and UCLA [35]. Caragliu et. al. [36] present a study on

the factors that determine the performance of a “smart city”.

They focus specifically on European cities by analyzing urban

environments, levels of education and different accessibility

modalities that are positively correlated with urban wealth.

Since one important aspect of smart cities is safety, Patton [37]

emphasizes the use of audio sensors and cameras that allow

authorities to quickly respond in an emergency event without

receiving a 911 call. We note that we consider a different

angle: making users aware of their surroundings.

Furtado et. al. [4] propose the use of social media in a

collaborative effort to inform people about crime events that

are not reported to police. Their wiki website spots areas on

the map where participant users have reported crime events.

Police departments also release tools to make citizens aware of

their safety, e.g., the Miami-Dade police department, deployed

an web application [38] that identifies crime areas based on

current crime reports. We note however that our solution

seamlessly integrates context and time sensitive safety metrics

into the everyday user experience.

Participatory sensing is receiving increasing attention due

to the popularity of mobile devices. The multimodal sensing

capabilities of devices enable a broad range of applications that

leverage collected data from participants, sensed from their

surroundings. Estrin [39] discuss advantages of participatory

sensing in health and transportation and provide insights on the

architecture of participatory sensing applications. Thiagarajan

et. al. [40] propose cooperative transit tracking using mobile

phones. Privacy becomes a serious concern when the user

personal information may be compromised. Christin et. al.

[41] present a survey on the efforts made to preserve privacy

in participatory sensing systems. In contrast, our work does

not collect user information, but instead allows devices to

aggregate information collected from co-located users without

learning personal information.

Dynamic safety practices leveraging social networks and

GPS mobile phones have been introduced in [42] to create a

system for personalized safety awareness. The system exploits

sensors available in mobile phones to enhance the personal

safety of users by aggregating community. Our work is dif-

ferent in that we predict future crime levels, define a safety

index that includes the impact of crimes on locations and on

the profiles of users and propose a distributed algorithm that

privately aggregates safety indexes of co-located users.

The problem of crime prediction has been explored in

several contexts. Hotspot mapping [43] is a popular analytical

technique used by law enforcement agencies to identify future

patterns in concentrated crime areas. Different methods and

techniques have been analyzed to review the utility of hotspot

mapping in [44], [45], [46], [47]. Hot spot analysis however,

often lacks a systematic approach, as it depends on human

intuition and visual inspection.

A variety of univariate and multivariate methods have

been used to predict crime. Univariate methods range from

simple random walk [48] to more sophisticated models like

exponential smoothing. While exponential smoothing offers

greater accuracy to forecast ”small to medium-level” changes

in crime [49], we have shown that ARIMA and ANN models

outperformed it on our data. In [50], Ediger et al. show the

effectiveness and reliability of ARIMA and SARIMA models

in predicting the total primary energy demand of Turkey from

2005 to 2020. Olligschlaeger [51] showed that ANNs were

able to predict drug markets. We note that the goal of our work

is not intrinsically crime forecasting. Instead, we incorporate

crime forecasting techniques into our safety metrics, in an

attempt to provide to participating users a dynamic framework

for safety awareness.

X. CONCLUSIONS

In this paper we have proposed several techniques for eval-

uating the safety of users based on their spatial and temporal

dimensions. We have shown that data collected by geosocial

networks bears relations with crimes. We have proposed a
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Fig. 19. Android iSafe overhead. (a) Secret share generation and secret reconstruction time overhead. (b) iSafe communication overhead for single device
and for all 4 devices. (c) iSafe total communication size for single device and for 4 connected devices.

holistic approach toward evaluating the safety of a user, that

combines the predicted safety of the user’s location with the

aggregated safety of the people co-located with the user. Our

Android and browser plugin implementations show that our

approach is efficient both in terms of the computation and the

communication overheads.
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